
1Article Reprint 180-R164

ARTICLE REPRINT
Reprinted with permission from CIGRE, August 2021
Copyright © August 2021

Artificial Intelligence Application in
Grid Edge Asset Health Monitoring

SUMMARY
The problem: utilities and industrial applications have
expensive equipment where quickly resolving or predicting
malfunctions could increase revenue, reduce operations and
maintenance costs plus save significant amount of time and
effort in resolving issues. Machine learning is commonly done
in the cloud but transporting the necessary volume of data to
a server is both cost prohibitive and a cyber security issue.

This paper describes a process with proven results showing
trained AI models for device health, predictive maintenance
applications, and detecting manufacturing defects using
supervised learning. In addition, the paper shows how to
measure an AI model’s performance with meaningful metrics,
iteratively improve the model’s performance and lastly deploy
them to a constrained edge device.Pulseclosing Technology
Applications

As established in the previous sections, the essence of
PulseClosing Technology is the ability to detect the presence
of a fault without stressing the system or disconnecting power
to customers. Applying the concept not only at the device
level, but at the system level presents new ways to evaluate
the use and benefits of PulseClosing Technology.

KEYWORDS
Artificial Intelligence, Machine Learning, Edge Computing,
Grid Edge Asset Health

1. Problem Statement / Introduction
The electric grid has gone beyond just generation and
transmission/distribution infrastructure, the need to operate
a safe, reliable, and sustainable grid has led to exponential
growth of grid edge control devices, both the amount of them
and the level of complexity have increased over the past years
and this trend continues. The complexity of the control itself
poses challenges to monitor overall control system health,
requiring multiple components and factors to be considered

at the same time to determine system status, and it is often
the case where system effect of multiple factors cannot be
deduced in a straight-forward way by engineering looking
at discrete data points. On the other hand, these complex
control devices often come with high computation power, good
data sampling and storage capacity, which opens the door
for applying data driven health status monitoring to detect
manufacturing defects before deployment or malfunctions
while deployed.

Machine learning can be a solution to these types of
problems, but can be prone to mistakes at every step,
requiring:

• Data collection

• Data filtering and normalization

• Labeling the datasets

• Iteratively training and improving the models

• Deploying them on to the grid edge devices

This paper investigates how to collect data, train the model
while measuring the model’s performance then deploy the
model. In the end, the process and resulting model(s) can
be used for Artificial Intelligence to be applied within a grid
edge device to monitor its own health, to increase device
owner’s capability to quickly grasp events and anomalies in
the network so prompt and appropriate action can be taken.

2. Data Acquisition
a. Simulated data vs real-world

Data is paramount to training models for machine learning
and one of the first big challenges is how to obtain data?

There are two types of data: simulated data is generated
and collected in a controlled lab environment. The second type,
real-world data, is gathered from the ‘natural habitat’ where
the edge device or product is being deployed. Simulated data
can be generated without end; however, it cannot fill the reality
gap since not every situation can be mimicked accurately.
Simulated conditions can only be as good as the extent of

Q. GUO, R. ZHANG, V. OSTAPCHUK,
 W. WATTS, Y. SHARON, D. GUINN, M. GAO

S&C Electric Company
USA

2Article Reprint 180-R164

what is covered by the programmer. Mining real-world data
would provide a more accurately trained model which covers
all the edge cases. This does not mean simulated data is
not necessary. Real-world data is sometimes dangerous and
costly to collect but some AI algorithms are focused mainly on
predicting those ‘rare’ events; if these rare events are hard
to come by but simulating them is possible, it would open up
the possibility to choose how many of these rare events you
want to simulate. The model created from simulated data is
necessary and is very helpful and will come close to the real-
world data trained model, but it is also necessary to mix real-
world data to train a model for more reliability and accuracy.
Regardless of the source of data, they are all in essence just
data from the perspective of the model, the data will help
cover all the cases including edge cases and improve the
model.

In many cases, including ours, we tested the edge devices
in different environments, conditions, and edge cases in
a lab, collecting the different data from the sensors by a
microcontroller to use for training and testing the models.

b. Challenges Filtering Data

Depending on the source of the data and the quality of the
data, it may need to be filtered and/or cleaned. Real-world
data can be missing or incomplete, and if used as-is to train a
model, will result in a model with low accuracy: therefore, we
may have to fill in or remove data. When tests are run back-to-
back, such as with automated tests to gather simulated data
or a long collection of real-world data, potentially transitioning
between different scenarios, it’s important to separate the
data to be used for training data sets. If the transition data
is included in the training and/or testing, it could cause the
model to expect data that may never happen in the real-world,
resulting in a model that performs with poor accuracy.

c. Data splitting for training and testing

Once the training data has been filtered and cleaned, the
next step is dividing the data into 2 subsets. The first set
to determine how much data to train the model, the training
data. The second set, what data will be used to test the
performance of the model, the test data. The reason all data
should not be used solely to train the model is it makes it
difficult to evaluate the performance of the model because
the model was trained with all the data, so it has seen all of it.

3. Models

The next step is to determine what machine learning algorithm
to train and use, in this case, we will be looking at SVM and
Neural Networks.

a. SVM
SVM stands for Support Vector Machine, a supervised machine
learning algorithm. The idea for SVM is to separate labeled
data as much as possible, for example, if the data is labeled
as two classes, the goal is then to draw a separation line that
maximizes the distance between itself and the closest data
points from either class. SVM can handle data with multiple
classes and those that are not linearly separable as well.

Figure 1. Our SVM Model trained with 5 features, 3D plot for 3

of the 5 features.

SVM is a convex optimization problem which means the
global optimum solution is guaranteed to be found, unlike
neural networks, which can be stuck in local optimum
solutions as explained in the next section. Stochastic process
is not required for training SVM models, therefore training with
the same training data always results in the same consistent
model. SVM can handle thousands of training data and many
features yet is efficient. SVM has fewer hyperparameters to
tune, which makes it easier to develop a model compared to
neural networks.

While SVM can handle data with classes that are not
linearly separable, its performance with nonlinear data
may not be as good as neural networks. A SVM model may
suffer from overfitting if not tuned carefully. Overfitting is
the phenomenon where the model performs well on training
data, but not on testing data. The reason is that the model is
trained to fit the training data so well that it also picks up the
noises in the training data.

b. Neural Network
Neural networks (NN) are a subset of machine learning and
is similar to the behavior of a human brain, it allows the
computer program to recognize patterns and solve common
problems with deep learning algorithms. A human brain has a
network of billions of neurons, a neural network is comprised
of a multi-layered network of many neurons. The more neurons
and more layers, the higher the complexity of the model.

3Article Reprint 180-R164

Neural networks are great for fitting complex models e.g.,
non-linear models. They are also great for models with large
datasets of hundreds of thousands to millions. It is reliable
in an approach of tasks involving many features. It works by
splitting the problem of classification into a layered network
of simpler elements. Neural Networks work best with more
data points. It can be also extremely flexible in the types of
data they can support; they do a decent job at learning the
important features from basically any data structure, without
having to manually derive features.

However, with advantages come some disadvantages, it
requires large amounts of data compared to other machine
learning algorithms, such as SVM, as it needs at least
hundreds of thousands if not millions in labeled samples.
This leads to overfitting and generalization problems, in
other words, the model might be tuned too perfectly to the
data it sees and perform poorly in predicting data it has not
seen before. Neural networks are also more computationally
expensive and takes more time to train compared to other
algorithms, such as SVM. The training time can take a few
minutes to hours to days, it depends on the size of the data,
the complexity of the neural network, and the hardware doing
the computation. Randomness and indeterministic nature
in the training of the Neural Network sometimes leads to
getting stuck in local minima when searching for the optimal
global minimum resulting in inconsistent and unreliable
model generation using the exact same training data; thus,
it requires multiple runs to train a model that has good
validation and testing results and not overfit the model. Since
there are no specific rules for determining the structure of
a neural network, it requires a lot of effort in trial and error
to find the optimal network structure to achieve the best
performance.

4. Metrics

 Figure 2

a. Accuracy

Accuracy gives an overall rating on all the correctly identified
results from all the data points. One thing we learned quickly
when working with machine learning is Accuracy is not the
end all be all metric. On one of our abnormal conditions for
Device Health, the first trained model had an 85% accuracy,
an excellently performing model on the first try. After looking
into it further though, we realized the data set had 85% of the
first abnormal condition and so the model was just reporting
everything had that abnormal condition, resulting in a lot
of false positives. Based on our understanding of why the
accuracy was so high, we concluded we needed additional
metrics to ensure we could measure the performance of our
models.

b. Precision

Precision shows how precise the model is out of those
predicted to be positive, how many of them are actually true
positive. The reason this is important is because the costs of
a false positive can be incredibly high. The previous example
showed 15% of the results were false positives, imagine if
a device frequently had false positives for its health, that
could result in a lot of requests for maintenance on a device/
product that didn’t need it, resulting in wasted truck rolls,
therefore wasted time and money.

c. Recall

Recall on the other hand calculates how many of the actual
positives are successfully identified by the model. Recall is
useful in cases where a False Negative would be costly, so in
this case an abnormal condition is not correctly identified, for
example, a component that will no longer work in 6 months
is classified as operating normally, this may eventually
cause a product to not function correctly which could cause
an unexpected outage resulting in an emergency truck roll
instead of scheduling maintenance to resolve the issue.

d. Neural Network vs SVM

One major difference between SVM and Neural Networks is
SVM models can create highly accurate models with much
smaller training data, thousands of datasets compared
to hundreds of thousands to millions needed for Neural
Networks. SVM models requiring smaller datasets allow rare

4Article Reprint 180-R164

conditions or shorter time to collect data yet resulting in highly
accurate models to be trained faster and with less effort. The
following figures demonstrate our initial efforts to classify the
edge device’s health and detect manufacturing defects:

 Figure 3

Figure 3 shows using training data containing 26000
datasets, comparing the results for abnormal condition A, the
neural network was able to catch most the abnormal condition
A (99% precision), but showed a lot of false negatives: it had
only a 77% recall and an overall accuracy of 94%.

On the other hand, the same training data on SVM, resulted
in 100% precision for abnormal condition A, with significantly
fewer false negatives (recall of 98%) and an overall accuracy
of 99.5%. These results show with just thousands of
datasets, SVM can train accurate models compared to the
more computationally complex Neural Networks.

Some abnormal conditions needed larger datasets; the
following figure 4 had about 500000 datasets with 4 features
for detecting abnormal condition B:

 Figure 4

Figure 4 shows the Neural Network demonstrated a 97.8%
precision at identifying the abnormal condition B compared to
the SVM’s 95%, a small but meaningful improvement.

5. Training Model

a. Steps to train model

Preparation of the data is a big and necessary step before
feeding it into the model. You must structure the data into
a consistent and compatible format, convert or compute
the features, remove data that has problems or should be
ignored, remove duplicate data, convert the data to the same
units, and finally label the data. Data is then normalized over
the combined dataset which is explained in the normalization
section.

After the data is processed, the machine learning model
is trained using that data. Hyperparameters need to be
configured and selected for training. The standard and
simplest way to configure a Neural Network is to set the
number of layers, number of epochs, number of hidden nodes,
and the learning rate. Depending on your model, you could
also specify additional hyperparameters to handle overfitting
such as Dropout, L2 Regularization, and Batch Normalization.
In SVM, a kernel needs to be selected for the model. Common
kernels include linear, polynomial, and RBF. All kernels have
a common hyperparameter C that needs to be selected. C
specifies the model’s error tolerance, a smaller C means
smaller error but if C is too small, the risk of overfitting
increases as discussed in Lessons Learned. For RBF kernel,
there is an additional hyperparameter γ that needs to be
selected. Once the model is configured properly, the training
data is then fed into the model, the result is a trained model
which can be used to run your inferencing on your target or on
a computer/server.

b. Evaluate model / Example applying metrics to model

We evaluate the model by looking at the training results as
well as the testing results. In those results, we see how good
the training results were; generally, there are no issues there,
however, based on the testing results we might infer from
the training results that it was ‘too perfect’ which suggests
that the model might be overfitted and thus it’s necessary to
investigate possibilities of overfitting. The testing results will
provide us with the accuracy, precision, and recall, which will
tell us how well the trained model classifies on the testing
data that it never has seen before. Based on these results,
we are able to evaluate how good is the trained model.

5Article Reprint 180-R164

Figure 5 Figure 6

As previously stated, the first neural network model trained
had an excellent accuracy right off the bat of 85% for detecting
abnormal condition A as shown in figure 5. As seen in figure
6, when adding in the metrics precision and recall from the
perspective on the edge devices running normally with no
abnormal conditions, it shows both precision and recall were
0% meaning the model was overfitted and not performing well
at all.

c. Iteration / How to improve the model

You can improve the model by adding more features and
collecting more data for training. The variety of data could also
improve your model such as data collected under different
conditions or, if there is a feature which you did not include,
it would provide the model with an additional N number of
data points alongside the other N numbers of data points
for other features. This additional information to the model
can improve the results of the model prediction. If you’re
constrained by the amount of data, then the model can only
be improved by how you tweak the hyperparameters of the
model. If you’re under performing in the testing then it could
be due to overfitting, and you can address that by building
a less complex model or address overfitting issues through
other techniques. Other cases for under performance could
also be due to noise, techniques such as applying filters to
the data or normalizing the data could help negate these
outliers. Originally our model with a smaller set of features:

 Figure 7. 2 Neural Network models trained and tested for detecting
abnormal condition C on the same set of data except one had

4 features and the other had an additional feature.

As can be seen from figure 7, the model with 4 features
in green showed a precision of 53%, indicating many of
the normal edge devices were incorrectly flagged with an
abnormal condition C (which would have resulted in unneeded
maintenance). The model with 4 features also showed 1%
false negatives, showing some of the abnormal condition C
were not successfully detected. The new model trained by
adding a 5th feature increased the precision to 100% and
recall to 100% meaning there were no false positives and no
false negatives.

By comparing the metrics, precision, recall, and accuracy,
we were able to clearly demonstrate adding the new feature
improved everything across the board for precision, recall and
accuracy, eliminating false positives and false negatives and
hence perfect accuracy for abnormal condition C.

6Article Reprint 180-R164

6. Deploying to Target

a. Export model

Once a model has been trained, the next step is to deploy it to
the edge device. For each type of machine learning algorithm,
there are different ways to deploy the models depending on
the hardware from processors to programmable logic (CPLD/
FPGA). By deploying the model to run on the edge device, it
can use the locally generated data to detect device health
issues or predictive maintenance applications without the
need to send data to a server. In our case, both NN and SVM
models were deployed to the edge device (target).

b. Tools (TensorFlow Lite) to run

 Figure 8

NN inference program for the target was written
utilizing TensorFlow Lite’s C++ library. The TensorFlow Lite
(TFLite [1]) flow on the target works as follows: load model that
is exported from host, sample-convert-normalize feature data
from target, utilize TensorFlow Lite API to run inference with
model, interpret output from model’s inference. The model
is loaded with a TFLite API from an exported model.tflite file
that resides on target. The data samples are collected from
the target’s sensors via a kernel module that enables C++
program access. The TFLite API is used to feed normalized
sample data into the model for inference. TFLite methods
return a list of predictions mapped to confidence values. A
C++ function produces a model prediction based on the label
associated with the highest confidence value.

c. SVM sklearn-porter conversion for target

 Figure 9

The SVM inference program for target was written utilizing
an open-source library sklearn-porter[2]. The model exported
with the sklearn-porter library is auto generated C header and
source files. The C program can be modified in order to include
functions needed to query sensors or data sources from the
target. The C program is then cross compiled for the target
and deployed. The SVM application flow on target works as
follows: sample-convert-normalize features data from target,
utilize SVM functions to run inference, and the SVM inference
functions returns a prediction. There is no need to load the
model as detailed in the TFLite NN deployment flow because
the SVM model is already compiled into the application binary.

d. CPU/memory metrics

CPU and Memory usage was characterized with the reported
memory from the memory proportional set size metric (PSS).
PSS is the total RAM usage of a process and includes the
memory shared with one or more processes. The shared
memory can include the part that the SVM or NN network
use of a particular shared library, such as the proportion
of libpthread that a process uses in conjunction with other
processes using libpthread.

CPU utilization of each machine learning process was
measured for our NN and SVM applications: sampled values
from the target, calculated features, and ran inference
engine. The sampling-inference cycle occurred every second.
The CPU usage of each application reached peak CPU during
this cycle. Our target system is running on a quad core ARM
1GHz processor. The following table shows the Linux process
stats - Memory, CPU, Inference Time - for the Neural Network
and Support Vector Machine applications.

App USS PSS RSS CPU Inference
Time

NN 2.9 M 3.4 M 5.0 M 0.7% 45 μs
SVM 648 K 1.1 M 2.7 M 0.7% 380 μs

e. Challenges

There were the following challenges associated with deploying
NN and SVM applications on an embedded system target:
optimizing SVM application for faster inference time; reducing
TensorFlow Lite NN application RAM footprint; decoupling
SVM application model for ease of deployment; and adding
configuration ability for feature normalization factors.

We measured an inference time of 380 μs on the SVM
application which was much slower than the NN inference time.
The SVM sklearn-porter model functions could be optimized
to improve inference time. TFlite library is compiled from
many opensource libraries and reducing RAM would require
determining which of these components could be removed
or memory optimized. The SVM model should be decoupled
from the binary in order to allow for easier deployments. Our
current SVM model requires that the binary be cross compiled
and redeployed every time the model is adjusted, a step that
is avoided when deploying a TFLite model. Features fed into
the model often require normalization factors. Adding these
normalization factors to a configuration file, e.g., yaml, or
json, would speed up the deployment process if normalization
factors need to be changed due to new model deployment.

7Article Reprint 180-R164

7. Lessons Learned

a. Data visualization

Throughout the investigation, we found that data visualization
helped. It helps investigate data irregularities, select the
appropriate machine learning model, and evaluate input
features being used. By plotting the samples with a subset
of input features on a 2D or 3D space, it is possible to spot
the irregular samples that are far from all other samples,
which means those samples are anomalies which could be
discarded; it is also possible to check if the samples are
linearly separable, which helps with the model selection
(linear vs. nonlinear). Figure 10 shows how visualization
helps identify two samples with anomalies (figure 10 (a)) and
samples that are not linearly separable (b):

 (a) (b) (c)

Figure 10

How visualization informs machine learning

By plotting the samples using different subsets of features, it is
possible to see what features are more significant in deciding
the classification. If no feature is significant in deciding the
classification, then the data might not be separable at all
with the features being selected, and more features might
need to be considered before training any machine learning
model. Figure 10 (c) is an example of samples where the
feature along the horizontal axis may not be significant for the
classification.

b. Training Data

Although it may seem obvious, it is not always easy to make
sure that the training data collected is representative of the
possible scenarios. It is always beneficial to consider as many
scenarios as possible when collecting training data. It is the
nature of machine learning algorithms that they may not know
what to do with new input that is not similar to any training
that the model has seen.

Another lesson about training data collection is not to
discard features in an early stage just because they are not
obviously relevant to the problem. In our experiment, some
features that seemed not relevant to the device’s health
conditions being identified turned out to be useful and helped
improve the performance of our models, as shown in figure 7.

c. Overfitting

How to detect and overcome overfitting?

One way we came to detect overfitting is just by looking at
the complexity of the model, training results, and trial and
error. First plot the data points on a multi-dimensioned graph
to visualize the contour line or plane of the model then see
whether the model tries to, for example, fit data that are
outliers which leads to incorrectly classified data, see figure
11 for an example.

In Neural Network there are several techniques which
can help with overfitting, the easiest technique is early
termination, which means stopping the training as soon as
the cost function has stabilized at a reasonable level. L2
Regularization, dropout, and batch normalization are additional
techniques in Neural Network to address overfitting.

For SVM, we mitigated overfitting by tuning the
hyperparameters. Specifically, we compared the performance
of different hyperparameter combinations on a set of
validation data that the training process has no visibility to.

 Figure 11. Data showing overfitting vs not overfitted

d. (Consistent) Data Normalization

In machine learning, the input features are usually normalized
so they are on similar scales. If an input feature χ is uniformly
distributed, we normalize it as follows:

where χi is the value of feature χ for the ith sample.

The data normalization should be consistent across
training and deployment. In other words, the mean and
maximum calculated from training data and used by the
training process should be passed to deployment without any
change. If there is a discrepancy between the normalization
factors used for training and those used for deployment,
the inferencing process on target will give incorrect results.
The best practice is to pass the normalization factors from
training to deployment automatically when exporting the
model for target.

Article Reprint 180-R164 • Reprinted with permission from
CIGRE © August 2021

8

To demonstrate the need to normalize data, while training
our neural network model to detect our edge device’s abnormal
conditions with the raw data without any normalization, it
resulted in the following model:

Figure 12. Model trained and tested with raw data

The model in figure 12 is trained and tested with raw
data, resulting in an overall accuracy of 25%, demonstrating
Condition C could not be detected at all (0% precision). The
other conditions only being detected 46% for Condition A and
14% for Condition B therefore doing a categorically poor job at
detecting abnormal conditions with the edge device.

Figure 13 demonstrates when we used normalized data to
train the model but fed raw data into the model:

Figure 13. Model trained with normalized data but tested with raw data

The new model trained with normalized data but tested with
raw data showed a drastic improvement, with all the abnormal
conditions detected to some degree, as demonstrated by
the precision between almost 50% to 66% of the abnormal
conditions successfully classified. The model shown in figure
13 resulted in an accuracy of 53%.

Figure 14. Model trained and tested with normalized data

Last, the model in figure 14 is trained with normalized data
running on the edge device, which normalized all the sensor
data resulted in catching all the abnormal conditions between
97 to 100% of the time with virtually no false positives as
demonstrated by the Recall. The model’s accuracy was 99.2%.

8. Conclusion

Monitoring overall system health of electric grid edge control
device is a challenging task, due to complexity of control
itself. Leveraging the computation power, data acquisition and
storage capability of these devices, AI and machine learning
can be an effective tool to this task, in that it can help capture
potential system level issues that are not obvious to human
inspection. Although machine learning process itself requires
large amount computational resource to train highly accurate
models, our results show by combining the data collection
and metrics for evaluating the quality of the models results
in models with high accuracy, low to no false positive or false
negative conditions. Further as demonstrated by our models
running on our edge devices, the model inferencing on target
only takes a limited amount of computational resource to run
and is thus feasible for most grid edge devices.

BIBLIOGRAPHY
[1] https://www.tensorflow.org/lite/

[2] https://github.com/nok/sklearn-porter

http://www.tensorflow.org/lite/
http://github.com/nok/sklearn-porter

