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Artificial Intelligence Application in 
Grid Edge Asset Health Monitoring

SUMMARY
The problem: utilities and industrial applications have 
expensive equipment where quickly resolving or predicting 
malfunctions could increase revenue, reduce operations and 
maintenance costs plus save significant amount of time and 
effort in resolving issues. Machine learning is commonly done 
in the cloud but transporting the necessary volume of data to 
a server is both cost prohibitive and a cyber security issue.

This paper describes a process with proven results showing 
trained AI models for device health, predictive maintenance 
applications, and detecting manufacturing defects using 
supervised learning. In addition, the paper shows how to 
measure an AI model’s performance with meaningful metrics, 
iteratively improve the model’s performance and lastly deploy 
them to a constrained edge device.Pulseclosing Technology 
Applications

As established in the previous sections, the essence of  
PulseClosing Technology is the ability to detect the presence 
of a fault without stressing the system or disconnecting power 
to customers. Applying the concept not only at the device 
level, but at the system level presents new ways to evaluate 
the use and benefits of PulseClosing Technology.
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1. Problem Statement / Introduction
The electric grid has gone beyond just generation and 
transmission/distribution infrastructure, the need to operate 
a safe, reliable, and sustainable grid has led to exponential 
growth of grid edge control devices, both the amount of them 
and the level of complexity have increased over the past years 
and this trend continues. The complexity of the control itself 
poses challenges to monitor overall control system health, 
requiring multiple components and factors to be considered 

at the same time to determine system status, and it is often 
the case where system effect of multiple factors cannot be 
deduced in a straight-forward way by engineering looking 
at discrete data points. On the other hand, these complex 
control devices often come with high computation power, good 
data sampling and storage capacity, which opens the door 
for applying data driven health status monitoring to detect 
manufacturing defects before deployment or malfunctions 
while deployed.

Machine learning can be a solution to these types of 
problems, but can be prone to mistakes at every step, 
requiring:

• Data collection

• Data filtering and normalization

• Labeling the datasets

• Iteratively training and improving the models

• Deploying them on to the grid edge devices

This paper investigates how to collect data, train the model 
while measuring the model’s performance then deploy the 
model. In the end, the process and resulting model(s) can 
be used for Artificial Intelligence to be applied within a grid 
edge device to monitor its own health, to increase device 
owner’s capability to quickly grasp events and anomalies in 
the network so prompt and appropriate action can be taken. 

2. Data Acquisition
a. Simulated data vs real-world

Data is paramount to training models for machine learning 
and one of the first big challenges is how to obtain data?

There are two types of data: simulated data is generated 
and collected in a controlled lab environment. The second type, 
real-world data, is gathered from the ‘natural habitat’ where 
the edge device or product is being deployed. Simulated data 
can be generated without end; however, it cannot fill the reality 
gap since not every situation can be mimicked accurately. 
Simulated conditions can only be as good as the extent of 
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what is covered by the programmer. Mining real-world data 
would provide a more accurately trained model which covers 
all the edge cases. This does not mean simulated data is 
not necessary. Real-world data is sometimes dangerous and 
costly to collect but some AI algorithms are focused mainly on 
predicting those ‘rare’ events; if these rare events are hard 
to come by but simulating them is possible, it would open up 
the possibility to choose how many of these rare events you 
want to simulate. The model created from simulated data is 
necessary and is very helpful and will come close to the real-
world data trained model, but it is also necessary to mix real-
world data to train a model for more reliability and accuracy. 
Regardless of the source of data, they are all in essence just 
data from the perspective of the model, the data will help 
cover all the cases including edge cases and improve the 
model.

In many cases, including ours, we tested the edge devices 
in different environments, conditions, and edge cases in 
a lab, collecting the different data from the sensors by a 
microcontroller to use for training and testing the models.

b. Challenges Filtering Data

Depending on the source of the data and the quality of the 
data, it may need to be filtered and/or cleaned. Real-world 
data can be missing or incomplete, and if used as-is to train a 
model, will result in a model with low accuracy: therefore, we 
may have to fill in or remove data. When tests are run back-to-
back, such as with automated tests to gather simulated data 
or a long collection of real-world data, potentially transitioning 
between different scenarios, it’s important to separate the 
data to be used for training data sets. If the transition data 
is included in the training and/or testing, it could cause the 
model to expect data that may never happen in the real-world, 
resulting in a model that performs with poor accuracy.

c. Data splitting for training and testing

Once the training data has been filtered and cleaned, the 
next step is dividing the data into 2 subsets. The first set 
to determine how much data to train the model, the training 
data. The second set, what data will be used to test the 
performance of the model, the test data. The reason all data 
should not be used solely to train the model is it makes it 
difficult to evaluate the performance of the model because 
the model was trained with all the data, so it has seen all of it.

3. Models

The next step is to determine what machine learning algorithm 
to train and use, in this case, we will be looking at SVM and 
Neural Networks.

a. SVM
SVM stands for Support Vector Machine, a supervised machine 
learning algorithm. The idea for SVM is to separate labeled 
data as much as possible, for example, if the data is labeled 
as two classes, the goal is then to draw a separation line that 
maximizes the distance between itself and the closest data 
points from either class. SVM can handle data with multiple 
classes and those that are not linearly separable as well.

Figure 1. Our SVM Model trained with 5 features, 3D plot for 3 

of the 5 features.

SVM is a convex optimization problem which means the 
global optimum solution is guaranteed to be found, unlike 
neural networks, which can be stuck in local optimum 
solutions as explained in the next section. Stochastic process 
is not required for training SVM models, therefore training with 
the same training data always results in the same consistent 
model. SVM can handle thousands of training data and many 
features yet is efficient. SVM has fewer hyperparameters to 
tune, which makes it easier to develop a model compared to 
neural networks.

While SVM can handle data with classes that are not 
linearly separable, its performance with nonlinear data 
may not be as good as neural networks. A SVM model may 
suffer from overfitting if not tuned carefully. Overfitting is 
the phenomenon where the model performs well on training 
data, but not on testing data. The reason is that the model is 
trained to fit the training data so well that it also picks up the 
noises in the training data.

b. Neural Network
Neural networks (NN) are a subset of machine learning and 
is similar to the behavior of a human brain, it allows the 
computer program to recognize patterns and solve common 
problems with deep learning algorithms. A human brain has a 
network of billions of neurons, a neural network is comprised 
of a multi-layered network of many neurons. The more neurons 
and more layers, the higher the complexity of the model.
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Neural networks are great for fitting complex models e.g., 
non-linear models. They are also great for models with large 
datasets of hundreds of thousands to millions. It is reliable 
in an approach of tasks involving many features. It works by 
splitting the problem of classification into a layered network 
of simpler elements. Neural Networks work best with more 
data points. It can be also extremely flexible in the types of 
data they can support; they do a decent job at learning the 
important features from basically any data structure, without 
having to manually derive features.

However, with advantages come some disadvantages, it 
requires large amounts of data compared to other machine 
learning algorithms, such as SVM, as it needs at least 
hundreds of thousands if not millions in labeled samples. 
This leads to overfitting and generalization problems, in 
other words, the model might be tuned too perfectly to the 
data it sees and perform poorly in predicting data it has not 
seen before. Neural networks are also more computationally 
expensive and takes more time to train compared to other 
algorithms, such as SVM. The training time can take a few 
minutes to hours to days, it depends on the size of the data, 
the complexity of the neural network, and the hardware doing 
the computation. Randomness and indeterministic nature 
in the training of the Neural Network sometimes leads to 
getting stuck in local minima when searching for the optimal 
global minimum resulting in inconsistent and unreliable 
model generation using the exact same training data; thus, 
it requires multiple runs to train a model that has good 
validation and testing results and not overfit the model. Since 
there are no specific rules for determining the structure of 
a neural network, it requires a lot of effort in trial and error 
to find the optimal network structure to achieve the best 
performance.

4. Metrics

 Figure 2

a. Accuracy

Accuracy gives an overall rating on all the correctly identified 
results from all the data points. One thing we learned quickly 
when working with machine learning is Accuracy is not the 
end all be all metric. On one of our abnormal conditions for 
Device Health, the first trained model had an 85% accuracy, 
an excellently performing model on the first try. After looking 
into it further though, we realized the data set had 85% of the 
first abnormal condition and so the model was just reporting 
everything had that abnormal condition, resulting in a lot 
of false positives. Based on our understanding of why the 
accuracy was so high, we concluded we needed additional 
metrics to ensure we could measure the performance of our 
models.

b. Precision

Precision shows how precise the model is out of those 
predicted to be positive, how many of them are actually true 
positive. The reason this is important is because the costs of 
a false positive can be incredibly high. The previous example 
showed 15% of the results were false positives, imagine if 
a device frequently had false positives for its health, that 
could result in a lot of requests for maintenance on a device/
product that didn’t need it, resulting in wasted truck rolls, 
therefore wasted time and money.

c. Recall

Recall on the other hand calculates how many of the actual 
positives are successfully identified by the model. Recall is 
useful in cases where a False Negative would be costly, so in 
this case an abnormal condition is not correctly identified, for 
example, a component that will no longer work in 6 months 
is classified as operating normally, this may eventually 
cause a product to not function correctly which could cause 
an unexpected outage resulting in an emergency truck roll 
instead of scheduling maintenance to resolve the issue.

d. Neural Network vs SVM

One major difference between SVM and Neural Networks is 
SVM models can create highly accurate models with much 
smaller training data, thousands of datasets compared 
to hundreds of thousands to millions needed for Neural 
Networks. SVM models requiring smaller datasets allow rare 
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conditions or shorter time to collect data yet resulting in highly 
accurate models to be trained faster and with less effort. The 
following figures demonstrate our initial efforts to classify the 
edge device’s health and detect manufacturing defects:

 Figure 3

Figure 3 shows using training data containing 26000 
datasets, comparing the results for abnormal condition A, the 
neural network was able to catch most the abnormal condition 
A (99% precision), but showed a lot of false negatives: it had 
only a 77% recall and an overall accuracy of 94%.

On the other hand, the same training data on SVM, resulted 
in 100% precision for abnormal condition A, with significantly 
fewer false negatives (recall of 98%) and an overall accuracy 
of 99.5%. These results show with just thousands of 
datasets, SVM can train accurate models compared to the 
more computationally complex Neural Networks.

Some abnormal conditions needed larger datasets; the 
following figure 4 had about 500000 datasets with 4 features 
for detecting abnormal condition B:

 Figure 4

Figure 4 shows the Neural Network demonstrated a 97.8% 
precision at identifying the abnormal condition B compared to 
the SVM’s 95%, a small but meaningful improvement.

5. Training Model

a. Steps to train model

Preparation of the data is a big and necessary step before 
feeding it into the model. You must structure the data into 
a consistent and compatible format, convert or compute 
the features, remove data that has problems or should be 
ignored, remove duplicate data, convert the data to the same 
units, and finally label the data. Data is then normalized over 
the combined dataset which is explained in the normalization 
section.

After the data is processed, the machine learning model 
is trained using that data. Hyperparameters need to be 
configured and selected for training. The standard and 
simplest way to configure a Neural Network is to set the 
number of layers, number of epochs, number of hidden nodes, 
and the learning rate. Depending on your model, you could 
also specify additional hyperparameters to handle overfitting 
such as Dropout, L2 Regularization, and Batch Normalization. 
In SVM, a kernel needs to be selected for the model. Common 
kernels include linear, polynomial, and RBF. All kernels have 
a common hyperparameter C that needs to be selected. C 
specifies the model’s error tolerance, a smaller C means 
smaller error but if C is too small, the risk of overfitting 
increases as discussed in Lessons Learned. For RBF kernel, 
there is an additional hyperparameter γ that needs to be 
selected. Once the model is configured properly, the training 
data is then fed into the model, the result is a trained model 
which can be used to run your inferencing on your target or on 
a computer/server.

b. Evaluate model / Example applying metrics to model

We evaluate the model by looking at the training results as 
well as the testing results. In those results, we see how good 
the training results were; generally, there are no issues there, 
however, based on the testing results we might infer from 
the training results that it was ‘too perfect’ which suggests 
that the model might be overfitted and thus it’s necessary to 
investigate possibilities of overfitting. The testing results will 
provide us with the accuracy, precision, and recall, which will 
tell us how well the trained model classifies on the testing 
data that it never has seen before. Based on these results, 
we are able to evaluate how good is the trained model.
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Figure 5           Figure 6

As previously stated, the first neural network model trained 
had an excellent accuracy right off the bat of 85% for detecting 
abnormal condition A as shown in figure 5. As seen in figure 
6, when adding in the metrics precision and recall from the 
perspective on the edge devices running normally with no 
abnormal conditions, it shows both precision and recall were 
0% meaning the model was overfitted and not performing well 
at all.

c. Iteration / How to improve the model

You can improve the model by adding more features and 
collecting more data for training. The variety of data could also 
improve your model such as data collected under different 
conditions or, if there is a feature which you did not include, 
it would provide the model with an additional N number of 
data points alongside the other N numbers of data points 
for other features. This additional information to the model 
can improve the results of the model prediction. If you’re 
constrained by the amount of data, then the model can only 
be improved by how you tweak the hyperparameters of the 
model. If you’re under performing in the testing then it could 
be due to overfitting, and you can address that by building 
a less complex model or address overfitting issues through 
other techniques. Other cases for under performance could 
also be due to noise, techniques such as applying filters to 
the data or normalizing the data could help negate these 
outliers. Originally our model with a smaller set of features:

 Figure 7.  2 Neural Network models trained and tested for detecting 
abnormal condition C on the same set of data except one had 

4 features and the other had an additional feature.

As can be seen from figure 7, the model with 4 features 
in green showed a precision of 53%, indicating many of 
the normal edge devices were incorrectly flagged with an 
abnormal condition C (which would have resulted in unneeded 
maintenance). The model with 4 features also showed 1% 
false negatives, showing some of the abnormal condition C 
were not successfully detected. The new model trained by 
adding a 5th feature increased the precision to 100% and 
recall to 100% meaning there were no false positives and no 
false negatives.

By comparing the metrics, precision, recall, and accuracy, 
we were able to clearly demonstrate adding the new feature 
improved everything across the board for precision, recall and 
accuracy, eliminating false positives and false negatives and 
hence perfect accuracy for abnormal condition C.
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6. Deploying to Target

a. Export model

Once a model has been trained, the next step is to deploy it to 
the edge device. For each type of machine learning algorithm, 
there are different ways to deploy the models depending on 
the hardware from processors to programmable logic (CPLD/
FPGA). By deploying the model to run on the edge device, it 
can use the locally generated data to detect device health 
issues or predictive maintenance applications without the 
need to send data to a server. In our case, both NN and SVM 
models were deployed to the edge device (target).

b. Tools (TensorFlow Lite) to run

 Figure 8

NN inference program for the target was written 
utilizing TensorFlow Lite’s C++ library. The TensorFlow Lite 
(TFLite [1]) flow on the target works as follows: load model that 
is exported from host, sample-convert-normalize feature data 
from target, utilize TensorFlow Lite API to run inference with 
model, interpret output from model’s inference. The model 
is loaded with a TFLite API from an exported model.tflite file 
that resides on target. The data samples are collected from 
the target’s sensors via a kernel module that enables C++ 
program access. The TFLite API is used to feed normalized 
sample data into the model for inference. TFLite methods 
return a list of predictions mapped to confidence values. A 
C++ function produces a model prediction based on the label 
associated with the highest confidence value.

c. SVM sklearn-porter conversion for target

 Figure 9

The SVM inference program for target was written utilizing 
an open-source library sklearn-porter[2]. The model exported 
with the sklearn-porter library is auto generated C header and 
source files. The C program can be modified in order to include 
functions needed to query sensors or data sources from the 
target. The C program is then cross compiled for the target 
and deployed. The SVM application flow on target works as 
follows: sample-convert-normalize features data from target, 
utilize SVM functions to run inference, and the SVM inference 
functions returns a prediction. There is no need to load the 
model as detailed in the TFLite NN deployment flow because 
the SVM model is already compiled into the application binary.

d. CPU/memory metrics

CPU and Memory usage was characterized with the reported 
memory from the memory proportional set size metric (PSS). 
PSS is the total RAM usage of a process and includes the 
memory shared with one or more processes. The shared 
memory can include the part that the SVM or NN network 
use of a particular shared library, such as the proportion 
of libpthread that a process uses in conjunction with other 
processes using libpthread.

CPU utilization of each machine learning process was 
measured for our NN and SVM applications: sampled values 
from the target, calculated features, and ran inference 
engine. The sampling-inference cycle occurred every second. 
The CPU usage of each application reached peak CPU during 
this cycle. Our target system is running on a quad core ARM 
1GHz processor. The following table shows the Linux process 
stats - Memory, CPU, Inference Time - for the Neural Network 
and Support Vector Machine applications.

App USS PSS RSS CPU Inference 
Time

NN 2.9 M 3.4 M 5.0 M 0.7% 45 μs
SVM 648 K 1.1 M 2.7 M 0.7% 380 μs

e. Challenges

There were the following challenges associated with deploying 
NN and SVM applications on an embedded system target: 
optimizing SVM application for faster inference time; reducing 
TensorFlow Lite NN application RAM footprint; decoupling 
SVM application model for ease of deployment; and adding 
configuration ability for feature normalization factors.

We measured an inference time of 380 μs on the SVM 
application which was much slower than the NN inference time. 
The SVM sklearn-porter model functions could be optimized 
to improve inference time. TFlite library is compiled from 
many opensource libraries and reducing RAM would require 
determining which of these components could be removed 
or memory optimized. The SVM model should be decoupled 
from the binary in order to allow for easier deployments. Our 
current SVM model requires that the binary be cross compiled 
and redeployed every time the model is adjusted, a step that 
is avoided when deploying a TFLite model. Features fed into 
the model often require normalization factors. Adding these 
normalization factors to a configuration file, e.g., yaml, or 
json, would speed up the deployment process if normalization 
factors need to be changed due to new model deployment.
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7. Lessons Learned

a. Data visualization

Throughout the investigation, we found that data visualization 
helped. It helps investigate data irregularities, select the 
appropriate machine learning model, and evaluate input 
features being used. By plotting the samples with a subset 
of input features on a 2D or 3D space, it is possible to spot 
the irregular samples that are far from all other samples, 
which means those samples are anomalies which could be 
discarded; it is also possible to check if the samples are 
linearly separable, which helps with the model selection 
(linear vs. nonlinear). Figure 10 shows how visualization 
helps identify two samples with anomalies (figure 10 (a)) and 
samples that are not linearly separable (b):

 (a)         (b)           (c) 

Figure 10

How visualization informs machine learning

By plotting the samples using different subsets of features, it is 
possible to see what features are more significant in deciding 
the classification. If no feature is significant in deciding the 
classification, then the data might not be separable at all 
with the features being selected, and more features might 
need to be considered before training any machine learning 
model. Figure 10 (c) is an example of samples where the 
feature along the horizontal axis may not be significant for the 
classification.

b. Training Data

Although it may seem obvious, it is not always easy to make 
sure that the training data collected is representative of the 
possible scenarios. It is always beneficial to consider as many 
scenarios as possible when collecting training data. It is the 
nature of machine learning algorithms that they may not know 
what to do with new input that is not similar to any training 
that the model has seen.

Another lesson about training data collection is not to 
discard features in an early stage just because they are not 
obviously relevant to the problem. In our experiment, some 
features that seemed not relevant to the device’s health 
conditions being identified turned out to be useful and helped 
improve the performance of our models, as shown in figure 7.

c. Overfitting

How to detect and overcome overfitting?

One way we came to detect overfitting is just by looking at 
the complexity of the model, training results, and trial and 
error. First plot the data points on a multi-dimensioned graph 
to visualize the contour line or plane of the model then see 
whether the model tries to, for example, fit data that are 
outliers which leads to incorrectly classified data, see figure 
11 for an example.

In Neural Network there are several techniques which 
can help with overfitting, the easiest technique is early 
termination, which means stopping the training as soon as 
the cost function has stabilized at a reasonable level. L2 
Regularization, dropout, and batch normalization are additional 
techniques in Neural Network to address overfitting. 

For SVM, we mitigated overfitting by tuning the 
hyperparameters. Specifically, we compared the performance 
of different hyperparameter combinations on a set of 
validation data that the training process has no visibility to.

 Figure 11. Data showing overfitting vs not overfitted

d. (Consistent) Data Normalization

In machine learning, the input features are usually normalized 
so they are on similar scales. If an input feature χ is uniformly 
distributed, we normalize it as follows:

where χi is the value of  feature χ for the ith sample.

The data normalization should be consistent across 
training and deployment. In other words, the mean and 
maximum calculated from training data and used by the 
training process should be passed to deployment without any 
change. If there is a discrepancy between the normalization 
factors used for training and those used for deployment, 
the inferencing process on target will give incorrect results. 
The best practice is to pass the normalization factors from 
training to deployment automatically when exporting the 
model for target.
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To demonstrate the need to normalize data, while training 
our neural network model to detect our edge device’s abnormal 
conditions with the raw data without any normalization, it 
resulted in the following model:

Figure 12. Model trained and tested with raw data

The model in figure 12 is trained and tested with raw 
data, resulting in an overall accuracy of 25%, demonstrating 
Condition C could not be detected at all (0% precision). The 
other conditions only being detected 46% for Condition A and 
14% for Condition B therefore doing a categorically poor job at 
detecting abnormal conditions with the edge device.

Figure 13 demonstrates when we used normalized data to 
train the model but fed raw data into the model:

Figure 13. Model trained with normalized data but tested with raw data

The new model trained with normalized data but tested with 
raw data showed a drastic improvement, with all the abnormal 
conditions detected to some degree, as demonstrated by 
the precision between almost 50% to 66% of the abnormal 
conditions successfully classified. The model shown in figure 
13 resulted in an accuracy of 53%.

Figure 14. Model trained and tested with normalized data

Last, the model in figure 14 is trained with normalized data 
running on the edge device, which normalized all the sensor 
data resulted in catching all the abnormal conditions between 
97 to 100% of the time with virtually no false positives as 
demonstrated by the Recall. The model’s accuracy was 99.2%.

8. Conclusion

Monitoring overall system health of electric grid edge control 
device is a challenging task, due to complexity of control 
itself. Leveraging the computation power, data acquisition and 
storage capability of these devices, AI and machine learning 
can be an effective tool to this task, in that it can help capture 
potential system level issues that are not obvious to human 
inspection. Although machine learning process itself requires 
large amount computational resource to train highly accurate 
models, our results show by combining the data collection 
and metrics for evaluating the quality of the models results 
in models with high accuracy, low to no false positive or false 
negative conditions. Further as demonstrated by our models 
running on our edge devices, the model inferencing on target 
only takes a limited amount of computational resource to run 
and is thus feasible for most grid edge devices.
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